

Effective acid soil management

Associate Professor Jason Condon (CSU and NSW DPI)

Helen Burns (NSW DPI)

Anne-Maree Farley (NSW DPI)

James Holding (FarmLink), Helen McMillan (CWFS), Nick McGrath (HLN)

Acidity

Affects plant growth

Nutrient availability

Mo P Fe, Cu, Zn, Mn, Al

Soil pH

Source: agric.wa.gov.au

Acidity

Affects plant growth

Nutrient availability Aluminium toxicity

Source: Karl Andersson

Affects plant growth

Nutrient availability Aluminium toxicity Root growth decreased Nodulation decreases

Acidity

Affects plant growth

Nutrient availability

Aluminium toxicity

Root growth decreased Nodulation decreases

Phosphate binds with iron and aluminium = decreased P for plants

Plants susceptible to attack (pest and disease)

Productive agriculture is acidifying

Product removal:

Nitrogen inputs:

Urea, ammonium, legumes

alkaline

Productive agriculture is acidifying

Product removal:

Nitrogen inputs:

Urea, ammonium, legumes

acid

Productive agriculture is acidifying: paired 'paddocks'

CEC ~ 10

Black triangle: Undisturbed native pasture - cemetery

Red triangle:

Highly productive crop/legume-based pasture rotation. Lucerne hay cuts Yields up to: 7.5 t/ha wheat 2.8 t/ha canola 2.8 t/ha lupins

3 lime applications @2.5t/ha 1994, 2003, 2018

Source: Helen Burns

SAMPLING DEPTH

Effective management of soil acidity - Sampling

• 5 cm intervals to 20 cm when thinking of liming (severity of problem, where it is, how much lime is needed)

- AND checking the lime applied **did what you wanted** especially **BEFORE** sowing sensitive plants
- Only analyse things you use pH, exchangeable cations, Colwell P, and maybe OC%

Liming strategies

Old liming strategies not as good as we thought

Sample for pH 0-10cm (maybe 10-20 cm) Apply lime when pH is below pH_{Ca} 4.8

Apply enough lime to bring pH_{Ca} just above 5 (remove AI^{3+})

• New pH target = $pH_{Ca} > 5.5$ above acid layers

When to act ? Lime Rate x Incorporation Sites

	Lyndhurst	Morven	Toogong
pH _{Ca} @ 5-15 cm	3.9 to 4.1	4.0 to 4.3	4.8 to 4.9
Lime rate targeting >5.2	4.7 t/ha	3 t/ha	1 t/ha
Lime rate targeting >5.5	5.9	4	2.8
Lime rate targeting >5.5 (in 0-5 cm surface layer)	2.9	2	1.4
'Once-in-a generation'	7	6	3.8

Effectiveness of lime applications

	Lime rate (t/ha)
Lime rate targeting >5.2	4.7
Lime rate targeting >5.5	5.9
Lime rate targeting >5.5 (in 0-5 cm surface layer)	2.9
'Once-in-a generation'	7

Effective management of soil acidity - Effectiveness

2022 data shown

0 Н H 5 Н Soil depth (cm) ns 10 ns Control 15 Surface lime pH>5 Surface lime pH>5.5 ns Lime pH>5.5 offset ns Lime pH>5.5 offset x 2 20 25 ns ns 30 5 6 7 Ω 2 6 Soil pHCa $AI_{ex}\%$

Temora – established 2020

Farmlink (James Holding)

4 t/ha lime to get to pH 5.5 Incorp depth 10 cm

Mn toxicity 2022

Now what?

Remove acidity as a constraint Better root growth

Change in nutritional needs?? Soil carbon and biology??

Methul 2022

Nil Lime

pH_{Ca} >5.5 (4 t/ha lnc)

Less herbicide????

Morven – April 2020

Remove acidity as a constraint

Change plant response

Change in fertiliser practice?

Molybdenum toxicity

• Mo application post liming

Control

Source: Grace Kaveney

Molybdenum toxicity

• History of Mo use before liming (canola, pastures)

Source: Nick McGrath
Effective management of soil acidity - Now what?

Deep incorporation:

- Soft ground (sowing)
 - (grazing)
- Hostile subsoil
- Aggregate stability
- Erosion risk

Summary

- Incorporation gets you a head start put enough lime on to do the job
- Lime is a capital expense has long term benefits (choice of species)
- Ag production is an acidifying process (don't ignore it on your good soils)
- Sampling in 5 cm intervals to 20 cm defines the pH stratification
- Keeping pH_{Ca} > 5.5 helps liming effect move deeper....make pH 5.5 reliming trigger

Is it worth doing? - NSW production outcomes of

liming

Location	Enterprise/Pasture	Response	Average annual	Reference
(Region)		to lime	gross margin	
years			(\$/ha c.f no lime)	
Wagga	Sheep/Perennial	+3.8 DSE	+\$25	Li and Conyers (2006),
Wagga				Brennan and Li (2006)
(SE slopes)				
1992-2004				
Ebor	Cattle/Improved	+16% more	+\$89	Duncan (2003)
(Northern TL)		beef		
1999-2002		production		
Binalong	Sheep/Perennial	+2.4 DSE	-\$4	Leech (2006)
(Southern TL)		(+5.6 DSE	(+\$46)*	
1999-2004		annual SSP)		
Laggan	Sheep/Perennial	+2.9 DSE	+ \$181	Lieschke (2021)
(Southern TL)				
2015-2020				

Note gross margins are those at the time of research and does not account for current commodity prices

Holland and Behrendt 2020

FIGURE 2 The annualized net present value (NPVa) (£ ha⁻¹ year⁻¹) at four different total amounts of lime applied (t ha⁻¹) at Rothamsted (•) and Woburn (O) over 35 years at median total liming costs and median crop price

Effective management of soil acidity - Now what?

Unexpected herbicide damage Legume damage could be caused by:

Anne-Maree Farley Wagga updates 2020

How to manage? – start by measuring the actual soil

Measuring a highly variable property

More subsamples = less noise 25-30 is good for pH

use of tolerance (Fox 1980):

like

Acidity

pH = - log H⁺ concentration

H⁺ concentration = in soil solution (changed by nature and agriculture)

-ve = H⁺ concentration \uparrow pH \downarrow

log = 1 acid pH 6 10 acid pH 5 100 acid pH 4

use of tolerance (Fox 1980):

like

'the hazard of flying a low powered aircraft up a narrow canyon. The course starts easily and the scenery is beautiful,

use of tolerance (Fox 1980):

like

'the hazard of flying a low powered aircraft up a narrow canyon. The course starts easily and the scenery is beautiful, but options run out very quickly

use of tolerance (Fox 1980):

like

'the hazard of flying a low powered aircraft up a narrow canyon. The course starts easily and the scenery is beautiful, but options run out very quickly and to continue is to invite disaster'

Effective management of soil acidity - Effectiveness

рΗ

More clay = bigger interchange bench = more buffering capacity

Effective management of soil acidity - Sampling

How much lime?

- Target pH
- Starting pH
- pH buffering capacity

How much change in pH per tonne of lime

How much lime?

ECEC = pH buffering surrogate

Soil test ECEC (meq/100 g)	Lime required (t/ha) to lift the pH of the top 10 cm:				
	from 4.0 to 5.2	from 4.3 to 5.2	from 4.7 to 5.2	from 5.2 to 5.5	
1	1.6	0.8*	0.3*	0.2*	
2	2.4	1.2	0.5*	0.4*	
3	3.5	1.7	0.7	0.5*	
4	3.9	2.1	0.9	0.6	
5	4.7	2.5	1.1	0.7	
6	5.5	3.0	1.2	0.8	
7	6.3	3.3	1.4	1.0	
8	7.1	3.8	1.6	1.1	
9	7.9	4.2	1.8	1.2	
10	8.7	4.6	1.9	1.3	
15	12.5	6.7	2.8	1.9	

How much lime?

If using 5 cm intervals:

Use table for CEC and starting pH and halve the lime rate (was based on 10 cm)

Then add lime calculated for each 5 cm interval

Then consider likely depth of incorporation, where the acidity is and adjust rate

2021 data

Depth of incorp \neq Depth of mixing